

www.strobl-f.de/ueb107.pdf

10. Klasse Übungsaufgaben	10
Vorzeichenbereiche	07

1. Ermitteln Sie die Vorzeichenbereiche für den folgenden Funktionsterm:

$$f(x) = x^3 - 3x^2 + 2$$

2. Ermitteln Sie die Vorzeichenbereiche für die durch

$$f(x) = -(x-2)^3 \cdot x^2$$

gegebene Funktion und fertigen Sie eine prinzipielle Skizze des Funktionsgraphen.

3. Lösen Sie die folgenden Ungleichungen:

(a)
$$-3x^2 - 4x + 5 > 0$$

(b)
$$x^2 + 10 < 3x$$

- 4. Ermitteln Sie den Definitionsbereich für $f(x) = \sqrt{5x^2 40x 100}$.
- 5. Faktorisieren Sie Zähler und Nenner, kürzen Sie anschließend und ermitteln Sie die Vorzeichenbereiche:

$$f(x) = \frac{10x^2 - 70}{\sqrt{7}x^2 + 5x - 2\sqrt{7}}$$

(Für die beim Lösen der quadratischen Gleichung des Nenners auftretenden Wurzeln siehe ueb91.pdf, Aufgabe 4 (b)).

6. Ermitteln Sie, in welchen Bereichen der Funktionsgraph ober- bzw. unterhalb der *x*-Achse verläuft:

$$f(x) = \frac{x^4 + 2x^3 + 3x^2}{(x^2 + x + 1)^2}$$

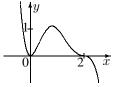
www.strobl-f.de/lsg107.pdf

10. Klasse Lösungen10Vorzeichenbereiche07

1. $x^3-3x^2+2=0$. Gezieltes Raten: $x_1=1$. Polynomdivision: $(x^3-3x^2+2):(x-1)=x^2-2x-2$. $x^2-2x-2=0$; $x_{1/2}=\frac{2\pm\sqrt{4-4\cdot1\cdot(-2)}}{2\cdot1}=1\pm\sqrt{3}$.

Lauter einfache Nullstellen mit Vorzeichenwechsel. Ferner sieht man für große x-Werte f(x) > 0. Somit: f < 0 $1 - \sqrt{3}$ f > 0 1 f < 0 $1 + \sqrt{3}$ f > 0

2. f(x) = 0; $x_{1/2/3} = 2$ (3-fache Nullstelle, Vorzeichenwechsel); $x_{4/5} = 0$ (doppelte Nullstelle, kein Vorzeichenwechsel). Somit (da z. B. f(3) = -9): f > 0 f > 0 f > 0 f > 0



- 3. (a) Löse die zugehörige quadratische Gleichung: $-3x^2-4x+5=0$: $x_{1/2} = \frac{4\pm\sqrt{16+4\cdot3\cdot5}}{2\cdot(-3)} = \frac{4\pm\sqrt{76}}{-6} = -\frac{2}{3} \mp \frac{1}{3}\sqrt{19}.$ Nach unten geöffnete Parabel mit Bereich " ≥ 0 " (Bild rechts). Also ist $L = [-\frac{2}{3} \frac{1}{3}\sqrt{19}; -\frac{2}{3} + \frac{1}{3}\sqrt{19}].$
 - (b) Zuerst alles auf eine Seite bringen: $x^2 3x + 10 \le 0$. Zugehörige quadratische Gleichung: $x^2 3x + 10 = 0$. $x_{1/2} = 1.5 \pm \sqrt{2.25 10}$ λ , also keine Lösungen, also "schwebende" nach oben geöffnete Parabel (siehe Bild), bei der die Werte unterhalb (wegen "<") der x-Achse gesucht sind. Da es solche Werte nicht gibt, ist $L = \{\}$.
- 5. Betrachte Zähler: $10x^2-70=0$; $x_{1/2}=\pm\sqrt{7}$. Betrachte Nenner: $\sqrt{7}x^2+5x-2\sqrt{7}=0$. $x_1=-\sqrt{7}$; $x_2=\frac{2\sqrt{7}}{7}$ (siehe ueb91.pdf). Somit: $f(x)=\frac{10x^2-70}{\sqrt{7}x^2+5x-2\sqrt{7}}=\frac{10(x+\sqrt{7})(x-\sqrt{7})}{\sqrt{7}(x+\sqrt{7})(x-\frac{2\sqrt{7}}{7})}=\frac{10(x-\sqrt{7})}{\sqrt{7}(x-\frac{2\sqrt{7}}{7})}$.

6. Da die Gleichung $x^2 + x + 1 = 0$ keine Lösung hat, ist der Nenner stets > 0. Zähler: $x^4 + 2x^3 + 3x^2 = x^2(x^2 + 2x + 3)$.

 $x_{1/2}=0$ oder $x^2+2x+3=0$, wobei letztere Gleichung wiederum keine Lösung hat. Stellt man sich den Graphen zum Term x^2+2x+3 vor, so handelt es sich also um eine "schwebende" Parabel ohne Nullstellen, d. h. x^2+2x+3 ist stets >0.

Somit: f > 0 f > 0

Der Graph von f verläuft somit in ganz $\mathbb{R}\setminus\{0\}$ oberhalb der x-Achse.