

www.strobl-f.de/ueb75.pdf

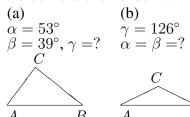
7. Klasse Übungsaufgaben

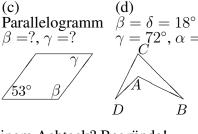
7

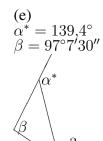
Winkel im Dreieck/an Geradenkreuzungen

05

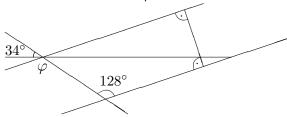
1. Berechne die fehlenden Winkel:



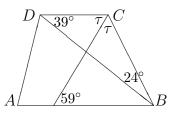




- 2. Wie groß ist die Winkelsumme in einem Achteck? Begründe!
- 3. Berechne den Winkel φ !



4. Begründe, ob die Geraden AB und CD in der nebenstehenden Skizze exakt parallel sein können.



5. Zeichne in ein Koordinatensystem die Punkte B(3|4), S(-3|1) und T(1|-2).

Errichte in B das Lot l auf SB und zeichne die Parallele zu l durch T, der Schnittpunkt mit SB sei A. Zeichne das Lot auf BT durch S, der Lotfußpunkt sei E, der Schnittpunkt des Lots mit AT sei C, der mit l sei D (Lot hierzu über E hinaus verlängern!).

Gib Beispiele für gleich große Winkel an , die mit den Punkten A, B, C, D, E, S, T angegebenen werden können (mit Begründung).

Beweise, dass $\not \subset ESA = \not \subset ETA$.

Gib die Koordinaten des Schnittpunktes von SB mit der y-Achse an.

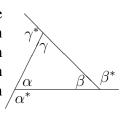
6. Begründungen

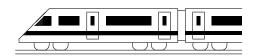
(a) Gegeben ist der Satz: "Sind in einem Viereck gegenüberliegende Winkel je 90° , so ergänzen sich die anderen beiden Winkel zu 180° ."

Fertige eine Zeichnung und begründe den Satz!

Gilt der Kehrsatz, d. h. "ergänzen sich die gegenüberliegenden Winkel in einem Viereck zu 180°, so sind die anderen beiden Winkel je 90°"?

(b) Verlängert man jede Seite eines Dreiecks, so erhält man die Nebenwinkel der Innenwinkel α , β , γ , die so genannten Außenwinkel α^* , β^* , γ^* . Beschreibe, was dann der Term $(180^\circ - \alpha) + (180^\circ - \beta) + (180^\circ - \gamma)$ darstellt. Dieser Term lässt sich umformen zu $540^\circ - (\alpha + \beta + \gamma)$. Erkläre, was man daraus folgern kann.





www.strobl-f.de/lsg75.pdf

7. Klasse Lösungen

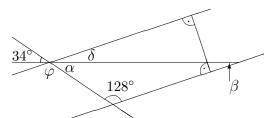
7

Winkel im Dreieck/an Geradenkreuzungen

05

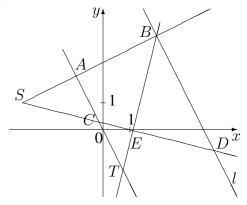
- 1. (a) $\gamma = 180^{\circ} (53^{\circ} + 39^{\circ}) = 88^{\circ}$
 - (b) $\alpha = \beta = (180^{\circ} 126^{\circ}) : 2 = 27^{\circ}$
 - (c) $\beta = 180^{\circ} 53^{\circ} = 127^{\circ}, \gamma = 180^{\circ} 127^{\circ} = 53^{\circ}$
 - (d) $\alpha = 360^{\circ} \beta \gamma \delta = 360^{\circ} (18^{\circ} + 72^{\circ} + 18^{\circ}) = 252^{\circ}$
 - (e) $\alpha=180^{\circ}-\alpha^{*}=180^{\circ}-139,4^{\circ}=40,6^{\circ}=40^{\circ}+0,6\cdot60'=40^{\circ}36'$ (Nebenwinkel) $\gamma=180^{\circ}-\alpha-\beta=180^{\circ}-(97^{\circ}7'30''+40^{\circ}36')=180^{\circ}-137^{\circ}43'30''=42^{\circ}16'30''$ $(=42^{\circ}16,5'=(42+\frac{16,5}{60})^{\circ}=(42+\frac{33}{120})^{\circ}=(42+\frac{11}{40})^{\circ}=(42+\frac{275}{1000})^{\circ}=42,275^{\circ})$
- 2. $(8-2) \cdot 180^\circ = 6 \cdot 180^\circ = 1080^\circ$, denn das 8-Eck kann in 6 Dreiecke zerlegt werden.

3.



- $\alpha=34^\circ$ (Scheitelwinkel) $\beta=180^\circ-\alpha-128^\circ=18^\circ$ (Dreieck) $g\|h$ (wegen gemeinsamem Lot), also $\delta=\beta=18^\circ$ (Z-Winkel) $\varphi=180^\circ-\delta-\alpha=180^\circ-18^\circ-34^\circ=128^\circ$ (Rest auf gestreckten Winkel)
- 4. Dreieck BCD: $2 \cdot \tau = 180^\circ 39^\circ 24^\circ = 117^\circ$, also $\tau = 117^\circ$: $2 = 58,5^\circ$ Somit sind der eingezeichnete 59° -Winkel und der Winkel τ (oben) keine gleich großen Z-Winkel, also sind AB und CD nicht parallel.

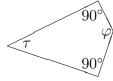
5.



Ferner sind diese Winkel gleich $\not \subset CSA$, denn die Dreiecke SCA und CTE haben rechte Winkel (bei A bzw. E) sowie gleiche Winkel bei C (Scheitelwinkel), so dass auch der dritte Winkel (bei S bzw. T) wegen der Winkelsumme im Dreieck gleich sein muss.

Der Schnittpunkt von SB mit der y-Achse hat die Koordinaten (0|2,5).

6. (a)



Wegen der Winkelsumme im Viereck ist $\varphi=360^{\circ}-90^{\circ}-90^{\circ}-\tau=180^{\circ}-\tau.$ φ und τ ergänzen sich also zu $180^{\circ}.$

Dieser Kehrsatz stimmt nicht. Es könnte z. B. $\alpha=\beta=45^\circ$ und $\gamma=\delta=135^\circ$ sein, so dass sich α und γ zu 180° ergänzen, ohne dass β und δ je 90° sind.

(b) Der Term stellt die Summe der Außenwinkel dar. Da wegen der Innenwinkelsumme im Dreieck $\alpha + \beta + \gamma = 180^{\circ}$, ist die Summe der Außenwinkel gleich $540^{\circ} - 180^{\circ} = 360^{\circ}$.