Ebene durch einen Punkt und eine Gerade
Die Ebene $E$, die die Gerade $ g : \vec x = \vec u + t \vec v$ und den $ A \notin g $ Punkt enthält, hat als Parameterform beispielsweise: $$ E: \vec x = \vec a + s(\vec u - \vec a) + t \vec v $$
Alternativ dazu kannst Du als Stützvektor auch $ \vec u $ benützen und statt dem ersten Richtungsvektor auch $ \vec a - \vec u $. Der Richtungsvektor $ \vec v $ aus der Geraden muss aber auf jeden Fall verwendet werden.
Beispiel
Mit $A(2|2|-1)$ und $ g : \vec x = \begin{pmatrix} 5 \\ 4 \\ -14 \end{pmatrix} + t\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} $ ergibt sich für $ E $:
$$ E : \vec x = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} + s\begin{Bmatrix}\begin{pmatrix} 5 \\ 4 \\ -14 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}\end{Bmatrix} + t\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \\ = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} + s \begin{pmatrix} 3 \\ 2 \\ -13 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} $$
Kommentare
Top-Lernmaterialien aus der Community 🐬
Lotgerade auf eine Ebene durch einen Punkt
Ebene senkrecht zu einer Geraden und durch einen Punkt
Lagebeziehungen und Schnittberechnung: Spurpunkte einer Geraden